Fast Numerical Techniques for Electromagnetic Problems in Frequency Domain

نویسنده

  • MARTIN NILSSON
چکیده

Nilsson, M. 2003. Fast Numerical Techniques for Electromagnetic Problems in Frequency Domain. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 916. 38 pp. Uppsala. ISBN 91-554-5827-0 The Method of Moments is a numerical technique for solving electromagnetic problems with integral equations. The method discretizes a surface in three dimensions, which reduces the dimension of the problem with one. A drawback of the method is that it yields a dense system of linear equations. This effectively prohibits the solution of large scale problems. Papers I-III describes the Fast Multipole Method. It reduces the cost of computing a dense matrix vector multiplication. This implies that large scale problems can be solved on personal computers. In Paper I the error introduced by the Fast Multipole Method is analyzed. Paper II and Paper III describe the implementation of the Fast Multipole Method. The problem of computing the monostatic Radar Cross Section involves many right hand sides. Since the Fast Multipole Method computes a matrix times a vector, iterative techniques are used to solve the linear systems. It is important that the solution time for each system is as low as possible. Otherwise the total solution time becomes too large. Different techniques for reducing the work in the iterative solver are described in Paper IV-VI. Paper IV describes a block Quasi Minimal Residual method for several right hand sides and a Sparse Approximate Inverse preconditioner that reduce the number of iterations significantly. In Paper V and Paper VI a method based on linear algebra called the Minimal Residual Interpolation method is described. It reduces the work in an iterative solver by accurately computing an initial guess for the iterative method. In Paper VII a hybrid method between Physical Optics and the Fast Multipole Method is described. It can handle large problems that are out of reach for the Fast Multipole Method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

Approximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran

This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential ...

متن کامل

Application of multiresolution analysis to the modeling of microwave and optical structures

A review of wavelet based techniques for the modeling of electromagnetic and optical structures is provided in this paper. Fundamental theoretical aspects of Multiresolution Analysis are mentioned along with mathematical properties of wavelet bases that lead to the construction of highly ecient numerical schemes and fast algorithms. Applications of such schemes in the ®eld of time and frequenc...

متن کامل

Numerical Techniques for Integral Equations

Finding computationally efficient numerical techniques for simulation of three-dimensional structures has been an important research topic in almost every engineering domain. Surprisingly, the most numerically intractable problem across these various disciplines can be reduced to the problem of solving a three-dimensional potential problem with a problem-specific Greens function. Application ex...

متن کامل

Numerical Modelling of Underwater Electromagnetic Propagation

This paper considers the application of numerical techniques to modelling large 3D Extremely Low Frequency (ELF) electromagnetic problems in the time and frequency domains. The environment model consists of three material layers: air, sea and seabed. To represent a coastal region, the sea region is shallow with a variable depth and includes a sloping seabed. The electromagnetic source is a harm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003